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N Abstract

o We consider a single-input nonlinear disérete-time system of the form
o Z: x(t+1) = f(x(t),u(t))

it

5::;, where erRN, uelR, and f(x,u):IR"m +RY is a ¢ R\- valued function.

> (A

'?.: Necessary and sufficient conditions for approximate linearizability are

P

given for Z. We also give a sufficient condition for local linearizability.

A Finally, we present analogous results for multi-input nonlinear discrete-

.“

k) .

h time systems.
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3 . I. Introduction NS
" = Nl dar me‘f'\‘[ R : SR
‘ Me cons1der7a single-input nonlinear discrete-time system of 4he form .

: L: x(t+1) = f(x(t) u(t)) L | 7(1)

B - P
N 1

.~

( where erRN, uelR and f(x u)

—

+R is a ¢ RN-valued function.

e

e

" Many authors have studied (local or global) linearization (Cheng et. al.
1985, Hunt and Su 1981, Jakubczyk and Respondek 1980, Krener 1973, Su 1982)
and approximate linearization (Krener 1984) by state feedback and coordinate

— -

i

change for nonlinear continuous-time systems. - -In this paper we discusse:

gy -
- e

3 necessary conditions and sufficient conditions for local linearization and
2 approximate linearization by state feedback and coordinate change for nonlinear

discrete-time systems. Other related work on nonlinear discrete-time systems

S can be found in (Grizzle 1985a, 1985b, Grizzle and Nijmeijer 1985, Monaco and
| /. .-
3; Normand-Cyrot 1983a, 1983b).ilsﬁf~~'wu . n1¢ . /5r"6Q, s ) I

2 Definition 1: A point (xe,ue) §bch that f(xe,ue) = Xg is called an equilibrium

W point.

! Now consider the following linear discrete-time system Zo.

)

Lot y(t+1) = Ay(t) +bv(t) = g(y(t),v(t)),
where
010...0

" 001" .

LN 0 s o

_ A= Y. 6 (NxN matrix)

: .. * 1

A 00...:0
)

" 0

= b = . (Nx1 matrix) 0
: 0 0
y 1

; Similar to the continuous-time case (Krener 1984, Su 1982), we can

‘' define local linearizability and approximate linearizability for a discrete-

LY ‘ades
) time system. Let (xe,ue) be an equilibrium point of L. 2;1__4

[ ]
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(. —
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v Definition 2: I is said to be locally linearizable at (xe,ue) if there

" exist an open neighborhood U(c:IRN+1) of (xe’"e) and a diffeomorphism
‘i' T:U-+T(U) such that (i) T =(T].T2....,TN) are functions of XysXpseoesXy

: only, (i) T(xg.u,) =0(N+1)xl’ and (iii) Tof =geT.
: ; If we let (y(t)Tv(t))T = T(x(t),u(t)), then y(t) and v(t) satisfy Zo-
qd Definition 2 indicates that we want to find a diffeomorphism T such that

{ the diagram in Figure 1 commutes. Once we find such a diffeomorphism,
'sf we can apply linear system theory instead of nonlinear system theory.

f| Definition 3: I is said to be approximately linearizable with order o if
T’: there exist an open neighborhood U< lRN”) of (xe,ue) and a diffeomorphism
%{ T:U-~+T(U) such that (i) T’=(T].T2,...,TN) are functions of X ,Xys....Xy
3 only, (11) T(xgsuy) =0(yy1)xy> AN (111) Tof =goT +0(x-xg u-ug)**'.

o Thus, in Definition 3 we consider the following nearly linear discrete-
;E time system:
" 25t ¥(t+1) = Ay(t) +bv(t) +0(x-xgu-u,)""]
E? where the NxN matrix A and Nx1 matrix b are the same as £,. Clearly, local
" linearizability at (xe.ue) implies approximate linearizability with arbitrary
= order.

? In Section II, some background material is reviewed and notations are
* defined. In Section III, necessary and sufficient conditions for approximate
;E linearizability will be given for the system (1). Also, we will give a
j} sufficient condition for local linearizability. We can define local
2 linearizability and approximate linearizabflity for multi-input discrete-time
‘d; systems similarly to Definitions 2 and 3. Then the multi-input case will be
:; discussed in Section IV.
o
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II. Preliminaries

In this section, notations and definitions to be used later will be
mentioned. The Kronecker product is very useful in the field of matrix

calculus (Graham 1981). First, define the Kronecker product @ by

anB auB aqu
Ags - a2]B azzB aqu
pxq mxn . . .

ap']B ap:,_B .e. a_B (pm)x(qn)

where a.. is the (i,j)-component of the pxq matrix A.

1]
Define the derivative of a matrix with respect to a matrix by
B 9 ) ] ]
B B...x+—8B
aa” aalz aa]q
] ] 9
B B =8B
Dy B = 9351 33y %9
3 3 3
B B...x—B8B
¥ % %pq ] (mp)x(nq)

We also define ;

On. To _
DAB- B, DAB = DAB, and 1

0y*! 8= D,(D}B) for 1 1.

Let h(x) be a scalar real valued function of xelRN. Then (kah)(x) and
(D'f'.h)(x) are Nkﬂ and 1xNK vectors, respectively.

X
Fact (Vetter 1970,1971): Using the definition of Kronecker product and

derivative operations on matrices, Taylor's formula can be expressed by
£ 1,k .
h(x) = h(0) +k£l T (DxT h(x)) o0 (x®Xx®... ®x) +R, ;1 (x*),

where Rzﬂ(x*) is a remainder term.
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Now defme the N XNk permutatlon matrix U1 i j as follows:
1*72° "k
the (ai -1)N +(ai -I)N 2, +(a1. -1)N +a; -th column of Ui 5 .

1 2 k-1 k 1720 Y

is the (a]-l)Nk°'I +(a2-1)Nk'2 +... +(ak_]-1)N +a,-th column of KK

identity matrix (IkaNk), for lia].az....,a <N (the {ai} are related to the

k
"base N" representation of the column). Here {i].iz,....ik} is a permutation

of {1,2,...,k}. For example, when N=2 and k=3,

Y123 = Tgxs
and - -
10000000
000071000
00100000
, . |oouvooo 1o
321 01000000
000007100
00010000
| 0000000 1 _

k

Let A be a pxN" matrix. Define the operator k.i by

® A=A E U i)

k! all permutations 11’12""’ k
{i],iz.....ik} of {1,2,...,k}

For example, when A is a pr3 matrix,

8 A = AlUypz+Uy3p +Upy3 + a3y *U312 *Us)-

Let

N B

{G5 0.0 FE)0,0) (360,00 0:0) (350,00}

be linearly independent; that is, they form a basis for IRN. Define
g:IRN-» IR by z(v) =y, where v is a 1xN row vector and

;
RIS 0.0 500,00

.7.“ 1) . X ;,,‘\,;""l“, ..e ' z ’ \ " O ¢ !'l' B " -{-{{ . " »
,‘,.o,‘a .u,_t A n.m&m R SOOI IS ..l.iql o._a 0.,0 ..t. (TN M KT XL 200 > e " G,

lli




That is, g(v) is the last coefficient of vT with respect to the basis

,’: {W] ’wzo--o .WN}, Whe?‘e w -( )(0 0)( )(0 0), ] <i <N A]SO def‘ne
z: RPNo RP by

R z(vy)

¢‘l§ Z(V) - C(VZ)

‘iei C(Vp)

» "
L where v, is the it" row of V.
~ i

----- Tw Tty - b"'"
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I1I. Single-Input Case

In this section, our main results will be given. If f(x,u) has an
equilibrium point, without loss of generality, we can assume that f(0,0) =0;
for, if not, let i=x-xe and ﬁ=u-ue. Then x(t+1) =f(x(t),u(t))

A -~ - -~
= f(x+xe.u+ue)-xe with f(0,0) =0,
Let

£1(x,u) = f(x,u),

?i”(x,u) = f(?i(x,u),o), for 1<i <N-1.
?1(x,u) represents the effect of an input u at t=0 on the state at t=i. ?i(x,u)

is essential for solving many problems arising in discrete time nonlinear systems.

Lemma 1: I is locally linearizable at (0,0) if and only if there exists a

C” function h:W(c IRN)+ IR such that (i) W is an open neighborhood of
OelRN, (ii) Du(ho?i) =0 on some neighborhood of OeIRN”. for 1<i <N-1,

” ,3h
(3% x=0 ‘1

(3(h°?2

(iii) det .ax )(0,0) £0,

.$N-1 )
ax (0,0)-

. (a'h
(iv) (ou(h.?"))(o’o) # 0, and (v) h(0) =0.

Proof: Necessity: Suppose that I is locally linearizable. Thus we have

a diffeomorphism T. Let h(x) =T](x). (Since T](x,u) depends only on x,
we can write T](x) instead of T](x.u).) Note that T2 =T,of. Since

Du(TZ) =0 on some neighborhood of the origin, Du(TI"f) =0 on some
neighborhood of the origin. From now on, for convenience, we will omit
"on some neighborhood of the origin". Note that T3 =T2of =T]o?2.
(Actually, we can write T3 -T]ofz, because T]of depends only on x. But ?2

is used, for consistency of notation.) Since Du(Ta) =0, Du(T]-?z) =0.

= [ =2 t .AN-] =
Proceeding in this manner, since TN TN-] f=... T] f and Du(TN) =0,

w4 o’

v‘.‘
EN

"y

“1 "y, W,
SN

P4 R PR
“;”)\)‘I \'-.\*I -‘.'t"\- ‘-*\
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D,(Ty=""1) 20. Thus we have shown tnat 0, (TyoF") 20, for 1<i <N-1.

Since T is a diffeomorphism, T, =T,o%'" for 2 <i <1, and Ty T ensTy

depend only on x,

=, dh
(5% )x=0
( 3‘h°?!)
det ] aX (0)0) # 0
#N-1

X )(0,0) o

I ( alhe
and D (he") #0. Since T,(0,0) =0, h(0) =o0.
Sufficiency: Suppose that there exists h:l]?tN +IR satisfying the given
conditions. Let T.(x) =hef'"T, for 1<i <N+1. Then it can be easily

of = Ao - . aT
checked that Tef =g°T and T(0,0) =0. Since det(( 5-(-)(’—“)-)(0,0)) #0,
there exists an open neighborhood U of (0,0) such that T:U-+T(U) is a
diffeomorphism by the inverse function theorem. (Q.E.D.)

Let £ = (ﬁ).

Lemma 2: I is approximately linearizable with order p if and only if there

exists a C_ function h:W(c IRN) +IR such that (i) W is an open neighborhood

of 0eRY, (i1) (030, (h=F1) (g gy =0 for 1<i <N-1 and 0 <j <p-1,

(N+1)3x1

- , oh
(ﬁ)x=0

( a(ho¥)

3% 1(0,0)

(3i1) det t 0,

' el
a(hef1)
L (S5 )(0,0)

(1v) (Du(ho?N))(o’o)#O. and (v) h(0) =0.

Proof: Necessity: Suppose I is approximately linearizable with order p.




V'R
&

W
:ég Let h(x) =T,(x). By definition, T,ef(x,u) =Ty(x) +0(x,u)?1. so
7y, .
e = 2 +
e (DJ(D,(h>f)) (g o) =0 for 0.<j <p-1. Note that T,*#2 =T,of +0(x,u)**".
- Since T,of(x,u) =T4(x) +0(x,u)**! by definition, T]o?z =T4(x) +0(x,u)P*1,
éa: Thus (Dgou(h°??))(0’o) =0 for 0 <j <p-1. Proceeding in this manner, we
RE can show that(DgDu(h"?'))(o’o) =0 for 1<i <N-1 and 0<j<p-1. Note that
(2 = (2 (hefi1)) for 1<i <N. Si
:si 3% 1(0,0) X (0,0) for 1<i<N. Since
5 T
N o) ] 3h
v (5% 0,0) (3% )x=0 ]
3 $ ( _8-2 ) ( 3 h°f )
o det ox 7(0,0) £ 0, det ax (0,0) £ 0.
> . .
k: a% :"N 1
L (2N ) a(hef™")
"n ( ox )(0,0) - ( ax )(0.0) -
v,
'
:?ﬁ It can be easily shown that T]°?N(x,u) =Tyey (Xo0) +0(x,u)°*!.  Thus
[\ AN ~ ) . .
333; Sufficiency: (by construction) Let
N T,(x) = h(x)
N o k times
i 00 = 1 gr (Orhef) g gy (Kexe.ex)
A = ’
’:% B 1 ok 22
Y T.(x) = D*_(hef)) X@X®...@x
3tx) = b ogr (O (0,0) ¢ )
%
e Ty(x) = E (Dk (ho?N-])) (xex®...@x)
o N Ly KT T (0,0)
— _+ 2N
e Theq(Xou) = Toef(x,u).
;ﬂr Then it can be easily checked that T as defined above satisfies the
Ly )

conditions of Definition 3. Q.E.D.
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Now note that

i mo
(0D, (h=F")) (0,0 = o (B0, 20,000 Peegs (2)
where
i m,. 20T
B0 = Dg(Duf1)
and

2-k3

~

merl K1 Ko g T kgeky Tk
- D (0gf' @p.' (0 f' @D

o3
= = = E E.-
11 k=1 ke |
T K, -k, T k=1 T
(0gF c...gng‘” o aDE‘ 0, F ) ...)), for 1<2 <.

(For a proof of (2), see the Appendix.) Let

R
ALY, Aok
A = L .
Ag Ao - Ay

where Aij is an (N-l)(N+1)iXNj+] submatrix defined by
Ri3 =0(n-1) (N1 T , TP

1 -
[ (833)(0,0)

2
- e B33)(0,0)

A, , 1fi>j.
R G DL -

N-1
L (8557)(0,0).

Let the (N—l)(N+1)1XI vector B.i be defined by

10
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ST RLIGITEN % LY SRR AR NERTSES ST R A X
R R L B L G R CK B e BN ERL TR J' SR *"-""-'.‘- e S :
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-1 -
(85.07(0,0)

R ( (B.,o)(o 0) )

(B

i o’(o 0) -

(See Section II for the definitions of ® and z.) Also, let B, =
S kT T L
(8" 8° .. ) .
With these preliminaries, we can state our main theorems.

Theorem 3: I is approximately linearizable with order p(> 2) if and only if

('i) {( )(0 0)’ ( )(0 0)( )(0,0)’ ceey ( )(0 0)( )(0 0)} are
linearly independent, and

(i) Bp_] eImage(Ap_]).

Proof:
Necessity: Suppose that I is approximately linearizable with order p
Then there exists a function h(x) satisfying (i)-(v) of Lemma 2; in

particular, (Du(h°?i))(o’o) ( )x-O ( )(0 0) (af )(0 0)" =0 for

]<1<N]s and ( )x-o( )(0 0) ( )(0 0)#0

rssume whot {(30)(6,0)+ (30,0035 0,01+ B0 B 0.0}
are not linearly independent. Then there exists k such that 1 <k <N-1 and

( )(0 o)( )(o 0) ° 2 %5 ( )(0 0)( )(0 0) for some constants {aj}g;a.

34(0,0) * (o 0 3 )(0 ,0)* and

N
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(&)

(af
ax’'x=0'3

N-1 . s . . .
)(0 0)( )(0 o) = 0. This is a contradiction, which implies that

-

{( )(0 o):( )(0 0)( )(0’0)s ’( )(0 0)( )(0 0)} are 'I'lnear]y

3 independent.

Recall that (Du(h°?i))(0,o) - (D':;'Du(m?i))(o’o) = 0 for m=0 and

1<i<N-1. Since {( (af

N-1
)(0 0)( )(0 0)}

is uniquely determined up to a constant

au’(o 0)*(5x )(o 050 (o, 0)*""
are linearly independent, (th)

e

x=0
multiple (i.e., (th)x=0 = ac, where the scalar a(#0) is arbitrary and the
i

y Nx] column vector c satisfies cT(af

)(0 0)( )(0,0) 0, for 0<i<N2

and ¢T3 D 4.0y = 1.

4 Now by (ii) and (iv) of Lemma 2, (D?Du(he?'))(o’o) =0 for 1 <m<p-1

K and 1 <i <N-1. From (2), we obtain
E B 810 1
1 ’ (D h), . i
k) 2 X= 0 2
! ’ 0 s e s 0 (D3h) 1’0 (D]h)
" E x ‘x=0 = - . x 'x=0
\ N-1 N-1
j B1,1 By,0
$ 1 1 : B
. 2,0

, B2.1 B2.2 ) .
3 : : 0 ... 0 | (0xh) e | i (3)
! N-1 N-1 B2,0
l 82’] 82’2 M
: : )

. 0 B
‘ 9'1.0

1 1 1 .
? Bp-],l Bp-] 2 Bp-].p-l &_]
! . Bo-1,0 | (0,0)

N-1 N-1 N-1 -

B B
L 0'1,1 p'] ’2 p-]’p-]J (0 0)




! ‘ Since (B},o)(o,o)“’lh)vo = (DZ;Du?T)(o.o)(Dl")po = ((Déouﬂ)(o,o))’

A (Dlh)x=0 = 0.3]

*0%(0,0)

RE
o Thus the right-hand side of equation (3) is -a[(8))T,...,(8° 1)T] =-aB;_].

It follows that Bo-1 is in the image of the matrix on the left-hand side
of (3). However, the {kah} are constrained because, for example,

At azh/axfaxj = azh/axjaxi. Hence, the stronger condition Bp_] € Image (Ap_])

holds, as is proved in the Appendix in Lemma A.2.

N4 Sufficiency: Suppose that (i) and (ii) above are true. By (i), there

!.':n exists an Nx1 vector C, such that CI(%E)ZO.O)(%)(O,O) =0 for 0 <1 <N-2

T,3f\N-1 ,of )
and C1(ax)(o,0)(au)(0,o) =]1. By (ii), there exist CZ,C3.....CO such that

.- 1 -
§$: 31 G2
= C

y 31 C3 .
A ) Bo-1

1
3% ] F!- Cp -

where (:1 is an N1><1 vector. Let

n) = T el )
.',']T!- i Xox® ... ®Xx)}.

w
“y i times

e Then it can be easily checked that (D‘gDu(ho?i))(o’o) =0, for 1<i <N-]

and 0<§ <p-1. Clearly (D, (hef")) g oy = (Dlh)I,o(g—:)?alo)(-g%)(o’o) =1 £0.

-".'o 13
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vy : Now assume that

N

R
3h "

" ('—)x«‘-o

,‘iﬂi!"

) 3(hef) .

R det | 5% (0,0) 0.
'_l'r. :

s (lhe f" 1 )

i (0,0)
V éﬁ

;-::‘., Then there exists k such that 1 <k <N-1 and (D h)x,o(ax)(0 0) = ):

o 0

T 1 af \N-1

O

ey . of \N-1-k+1i 2 . .

;::*:E = { @ (D h) -0(ax)(0 0) ( )(0 0) =0. This is a contraction, which
"

" 1mphes (iii) of Lemma 2. Hence, by Lemma 2, I is approximately

:;r‘ linearizable with order p. (Q.E.D.)
)

.ﬁg; Remark: I is approximately linearizable with order 1 if and only if (i) of
(329 _

o Theorem 3 holds, just as in the continuous case (Krener 1984).

‘.2,':': Now a sufficient condition for local linearizability is given in the

'ée:: following theorem.
ghe

Theorem 4: Suppose that f(x,u) of I is an analytic lRN-valued function.

h £ is locally linearizable at (0,0) if

)

i i) &) g 01D AT (3L oy} are Tneard

2 (1) 100,00 50(0,0) & (0,00 (500,00 ) (0,0) 2re Tinearly

‘ independent, and

'!;

. (i1) there exists k(<=) such that B!_espan(ct) for a1l £>1, where C; is

‘ 4

' composed of the first k columns of AL'

BN

_ Proof: By (i), there exists an Nx1 vector LN such that < (af)z0 0)(3:)(0 0)
B T, 3f\N-1 ' |
" - . 3 |
?::.E 0 for 0<i<N-2 and ¢, (ax)(0 0)( )(0 0) = 1 By (1), there exist |
4 J
g Cp1€3s+-+5C4 SUCh that § <= and

n’.;'

N,

X

B
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T T T TTY

N m 1T
! 21 2
i

]
3T
B . . .
i Ay : = -Bys for L2,
g 1

TS
0
o |
‘i:: where c. is an N'x1 vector. Let
i}'; . i terms
g
= h(x) = % %,—ciT(xon...Qx).
. i=1 '’
' Then it can be easily checked that (DZDu(h"?i))(o 0) =9 for 1 <i <N-1 and
o ” R ’
’,?" s >0. Since both h(x) and f' are analytic, hef!(x,u) are analytic, for
, 1<i <h-1. Thus D (heF!) 20, for 1<1 <N-1. As 1n the sufficiency proof
oy
fi} in Theorem 3, it can be shown that h satisfies the other conditions of
L0
:.:?- Lemma 1. (Q.E.D.)
. It is easy to see that (ii) of Theorem 4 implies (ii) of Theorem 3.
,g Example 1: Consider the following discrete-time nonlinear system
i xy(t+1) xp(t)42x; (t)u(t)su(t)?

T: = = f(x(t),u(t))
.ﬁ xo(t+1) x](t)+u(t)
b
i ofy (0 oy, @y (]
“:g Since (au)(o’o) ( ]) and (ax)(0,0)(Bu)(0,0) (0), (1) of Theorem 4 is
o satisfied. Note that '
PR
i 8= ((00,)(0,0)) * E([g 8]) ) [5]
" * 20 2
. and 8' = 0, for 12,
W 3'x] -
Q‘.‘
i}
3:?
4
3 15

t

& 00
4 A 1
RO NN W) :l’fﬁ'j,.!lﬁ'qni_' \

" OO TOS IO 240 N,
TN TGO OO *‘o.“&"n’l""fﬁﬂ AN




@
g
..;é;j
e : - o™ (Df) [01] © 1) [0001]
> B Df ® 10j@(01)=]0100
." 1 (0 0) (0,0) (0,0) 01 0001
.. R 0002
T SRR EP:
\ll
T
Bt It can be easily checked that all elements of the 4-th column of Aﬂ
W are 0 for i >2. Thus Blespan(cz) for £>1, where C: is composed of the
N,
::: first 4 columns of Az. Therefore (ii) of Theorem 4 is also satisfied.
4
Y Hence I is locally linearizable at (0,0). Actually we can construct a
;‘v diffeomorphism T =(T] ’TZ'T3) in the way that is given in the proof of
;“E. Theorem 4. Since
a8 B 0
i 0
i 2! 10
g -2
s
o . 0
o 3' 8X] z o
Ry 8, for £2>1,
i -
‘) (2+7)1 2£+1,
LKA
o ¢ = (000-2). Clearly c] = (10). Thus
R
R T(x)=x-£x2=x-x2
i, 1 1721 X2 7 47X
&Y
= = (-] = - 2
W To(x) = Tyof(x,u) = x5-x3
20
22 2,2

.,{ T3(x.u)=T]°f (x,u) = Xy +u-(x2+2x]u+u )<,
)

7P

Example 2: Consider

. 2 2
W X (t+1) Xo(t)+2x, (t)u(t)+x,(t)u(t)+u(t)

< P - [T ‘ = f(x(t),u(t))
0".‘
t T A
‘*:‘f‘i
”a:'.l
i
::l.. 16

75 N o o TR e . - O T A N T I Y LIt S
1T ( Q "-'\‘-'\ L G S LA R R R R CH & SRR et CRLRERTS,
R RLO L ‘:»'ns.'n."fo'ifv".ﬂif-ﬁ anee \'ku, NN NN o N .o. LT L i Py O L A A N LH € {0 2




) ) Clearly (i) of Theorem 3 is satisfied, because (g—:)(o 0) and
of of . Tn €T
(H)(0,0)(E)(o,o) are the same as in Example 1. Since (D£Duf )(0

o 2 0 1
:‘: 0 0}, B
i\ 2 0

- X

,0) T

. 2
(00, g,0)) = [3] . since (000,11)(g,q) =

(200000000).

OCOO0OO0COO0OOoOON
OCOO0OO0O0OO0O0OO0O
-
w
n

o
—

(=N o o)
OO
O —~O

nNo N
b

3 (B22)(0,0) = (Pf )(0,0) ® (O )(0,0) ® (O,F )(0,0)

" 0 1 0 1
i L0 1 01

-~
-2
_J

1
22" 5 (B22)(0,0)

—_O~000 ~0O ~
>

V -
d 4

OO0OO0OONOODOO OCOO0O0OO0O0OOO

COO0OO0O0O0O000 O0OO0O0O0CO0O0OO0OO0OO
COO0OONOOOO OCOO0O0O—-0000
OMNONOMNOMNO OO0 —-O—-=000
OO0OO0OONOOOO OCOO0OO0O0O0O0O0O0O
ONOMNOMNDONO O—-O0O0000O0O—~0O
oOMNOMNONONO COO0OO0O00O00O000

DPDOONOOONOOM

e
L e N 3

)

[1

-
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! T T T
(B21)(0,0) = (Dg(Dcf @ D,F7)) (g 0y *(DF @ DD, F') (g g

T T
. i Df ® 0, Df
- T T T
(Dgf ® D f )(0,0)+ DngQszou: +(D€f oDDf)(oo)
Df ®D,D,f
"0 0 4 01
2 000
02 40
2 000
=10 000
2 00 0
02 40
2 000
L0 2 4 0
[0 4 4 0]
4 000
06 60
A 6l ) 4 000
= @ 0 00O
21~ 5, 21/(0,0) © 400 0
0 6 60
4 000
L0 6 6 0

Since B] € Image (A]), L is approximately linearizable with p=2. However,
since B, ¢ Image (Az), it is not approximately linearizable with p=3. Thus

it is also not locally linearizable. Let

. 2
2

Ta = X5 =%

T3 = Xy +u -(x2 +2x]u +x.|2u +u2)2

Then

18




ne>
n

xp(t) +2x; (£)u(t) +x (£)2u(t) +u(t)? - (x, (1) +u(t))?

yy(t+1) 2 T (x(t41))

= x,(t) - x; (1) +x(£)%u(t)

X = T,(x(£)) +0(x,u)°

¥ ¥,(t) +0(x,u)’

Hne>
"

Ty(x(t),u(t) £ v(t)

; yo(t41) & T,(x(t+1))

19
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IV. Multi-Input Case

BT Y PR

The results in Section 11l can be easily generalized to the multi-
input case. Thus, in this section we give (without proof) a sufficient

condition for local linearizability and a necessary and sufficient

A

condition for approximate linearizability by state feedback and coordinate

change for a multi-input nonlinear discrete-time system (for proof, see

‘!
v Lee 1986).
:‘: Consider a multi-input nonlinear discrete-time system of the form
t
Z: x(t+1) = f(x(t),u(t)) (4)
; where x(t) eIRN, u(t) e R™, and f(x,u): rV LN is a C” IRN-vaIued
A\ .
R function. Also, consider the following multi-input linear discrete-time
system 20:
: Iyt y(t41) = Ay(t) +Bv(t) = g(y(t).v(t)),
K|
N
; where y(t) eR', v(t) eR", A = block diag {A”, 990+ Am},
: " b i
|. 0 ] 0 . 0 0 !
. 0 01 00
. Ayi = SRR s (KK matrix),
) 000 .01
* 0 0 0 .0 0]
K E'
K = N’
g S
: B = block diag {b],bz.....bm}. and
- by=(0...0 N (K;x1 matrix)
)
()"
4 Definition 4: I is said to be locally linearizable at (xe.ue) {f there
»
¢ exist indices {K, }T-'I’ an open neighborhood U(= RY™) of an equilibrium
Z:
3
" 20

8,5 ) 8y R TN T MR Y
?"‘“d" A'\l'-‘!i‘:o';tlig‘i‘tﬂjf o W' . \ k5 y P 3 ‘ .09, V00007, 1N, U A * 'h"‘n‘ti%‘?in ,‘l‘!.p &':‘Jsl"
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point (xe,ue) and a diffeomorphism T: U-+T(U) such that

o~ o

(i) T-= (TysTps...5Ty) are functions of x;.x,,...,x, only,
(ii) T(xe,ue) = 0(N+m)x1’ and
(111) Tof = geT.

S -, -

If we let (%8) = T(x(t),u(t)), then y(t) and v(t) satisfy the

relation ZO'

N Definition 5: I is said to be approximately linearizable with order p
: if there exist indices {I(i }T=], an open neighborhood U (clRN+m) of an
; equilibrium point (xe,ue) and a diffeomorphism T: U-+T(U) such that
(i) T= (T] ’TZ""’TN) are functions of x, Xps+eesXy ONlY,

(it) T(xe.ue) = 0(N+m)x]’ and

; (111) Tof = goT +0(x-xg,u-u)**'.

Thus in Definition 5 we consider the following nearly linear multi-

input discrete-time system:

'. - _ - o+l
Iy y(t+1) = Ay(t) +Bv(t) +0(x Xg U ue) R

PR X N

where the NxN matrix A and Nxm matrix B are as in Zo.

Now we state the generalized version of Lemmas 1 and 2 and Theorems 3

and 4. Just as in the single-input case, we can assume f(0,0) =0 without

P

loss of generality, if f has an equilibrium point. Also, define ?i(x.u)

3 in the same way as in the previous section.
3 Lemma 5: I is locally linearizable at (0,0) if and only if there exist
§ {Ki}Tﬂ and C~ functions h](x),hz(x).....hm(x): w(ciRN)» IR such that

(1) W is an open nefghborhood of 0 elRN.
(i1) Du(hj-?i) 0, for 1 <j<m and 1 <i 5kj-l,

21
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S
i
‘clg:n
i
S ’ (iii) .
‘ga i (ﬂ]_)
"';::v, ax’x=0
; ahlof
R =(0,0)
R K, -1
':t% 3hyef !
Kot (——)
W X (0,0)
det . #0
s :
fd ah_
2 ax’x=0
s .
" Ky
;4“4“.:: B(hm"me )
P | T 0.0)d
e
LN "'f .
) (iv) _ K, -
" 3(h]°f )
N i (0,0)
N det : 0
Wl *
L B(hmofK’“)
;%? ; I (0,0 |
Ve
1]
X and
i?.:l'\t
(v) hJ.(O) =0 for 1<j<m.
R
’:::'(:: Let £=(xT.uT)T. Thus £ is a (N+m)x1 vector.
X
iy
;:E:::! Lemma 6: I is approximately linearizable with order p if and only if
o there exist {Ki}'inﬂ and C* functions hy(x)sho(x)s. o osh (x): W(s RY)+ R
,‘ such that
L) )
RO (i) W is an open neighborhood of 0 eIRN,
an Ko (v o3 . i i
:;:.:.:: (11) (Dgnu(hj f ))(0'0) 0 for 1<j<m, 1<i <k; 1, and 0 <k <p-1, and
U
;{gé, (1i1), (iv), and (v) of Lemma 5 are satisfied.
Sy
Let
o
) *
’:’::l

f&“-,.l 22
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_ 2t Kl -1

RS af K2~ of o Km
- 80,00 s )(o o) (Tu;)(o.o)"" (3o, o)(au )(0,0)}

)

;';1':: L ( )(0 0)( )(0 0): -’( )(0 0)9 --’( )(0 0)( )(0 0)}1

i=1,...,m.

AN Suppose that the elements of E are linearly independent; that is,

‘:'. they form a basis for rN. Let o; = Z] K for 1<i<m. Define
's‘l’}‘ J

d(v): RVoR by ¢'(v) = g+ Where v 15 a XN row vector and
g T, of
73 v (au])(o 0) "0 *% ( )(o 0)(3 (0,0) o+1( )(o 0)*
i *a, (5x )(o ;)‘af’(o 0 ¢ o nla)(0,0) *

§ afy! ot

R * o (ax (0,0)*3

’(o 0)°

i

g Also, define z': RPN P, for i=1,2,...,m, by

Pt v = (ci(vl) ci(vz) ci(vp))T

th

)

3 “

KLy where v, is the j= row of V. Let
)

L}

(D D fT)(o.o)

S N 27
3559 ' c’( (530,71 0,0) )

i Ki-17
'(Déou? i )(000)‘

:; 23

%1 ) vy
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. i AT o iaT i\T
.'.C . Also, let i ((B]) (82) (Bk) ) . Let
4 SRR 1
D11 Dy D1y
A 1 1 1
o 0t- D21 D22 D2k
J k . . o
::, : . :
! 1 A 1
| D D2 Dy |
1 V4 ce s :
b where D,. = 0 . ..4 if 1 <j, and
' Y ke 1) (vem)
1
¥ [ 3i3)(0,0)
(82)
of. = 13700,0) 1ig 5 5
R W ()
B ¥ kz-
iﬁ (B ij )(0 0)-
oY

Theorem 7: I is approximately linearizable with order p( >2) if and only

if there exist {Ki}T=1 such that

W
\%
X (i) the elements of E are linearly independent,
N (11) span E; = span (E;NE) for 1<i <m, and
‘s L £

* (i) Y,.q € Image (Dp_1) for 1<£<m.
(: Remark: I is approximately linearizable with order 1 if and only if (i)
0
® and (ii) of Theorem 7 hold, just as in the continuous time case [6]. If
E m=1 (single-input case), K]=N. Thus (1) of Theorem 7 is the same as (i)
) of Theorem 3. Since E, =Eln E, (i1) of Theorem 7 is trivially satisfied.
'

Since the operator ;] is the same as the operator ¢ in the previous section,
9 1. 1. . .
ﬁ Yoo = B,.qr Since Dy = A ;. (111) of Theorem 7 is the same as (ii) of
b, Theorem 3. Therefore, Theorem 7 is a generalized version of Theorem 3.
v Now a sufficient condition for local linearizability is given in the
;-
l
l
b
2 24
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following theorem.

Theorem 8: Suppose that f(x,u) of I is an analytic IRN-va1ued function.
L is locally linearizable at (0,0) if

(i) the elements of E are linearly independent,

(ii) span Ei = span (EiﬂE), for 1<i <m, and

(iii) there exists k( <=) such that yfespan ((Ff‘)k) for 1 <£<m and

i >1, where (Ff)k is composed of the first k columns of Uf

Given the system (4) we choose the Kronecker indices {Ki }T=1 in a
similar way to the continuous time case (Hunt and Su 1981). First we form

the matrix

(au])(o 0) 0,0 (300,09

( )(0 0)( )(0 0) ( )(0 0)( )(0 0) ( )(0 0)( )(0 0)

( )(0 0)( )(0 0) ( )(0 0)( )(o 0) ( )(0 0)( )(0 0)

Set a; = number of linearly independent vectors in the first (i+1) rows,
for 0 <i <N-1. Take Yo =% and v, oy -0y g for 1 <i <N-1, and define
Ky to be the number of Y; with Y5 >1.

25
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Appendix
Lemma A.1: The equation (2) holds.

Proof: Clearly,

- Ly

D D, (hef') 2 (Bm l)(x u)(D )?,(x’u) and

m+l = £+1

g D, (hof’ ) Z (Bmﬂ L)(x u)( h)?i(x,u)
where {B I_} are to be determined. Then

i -
Bre1,0 = 0 (Bm o) (A.1)
Bl =p.(8) ,)+D ' B] for 1 <£<m (A.2)
m+]vc - E moz E ® m,t'] or - '

. T .

i _pgi i
an el Dgf ® Bm,m' (A.3)

L 5T

By (A.1), smceB Df ,B -DDf for m>1. Note that (2) is

0,0 Eu
true when m=1. Now suppose that (2) is true for m<p. Let 1<£<p. Then,

by (A.2),

i _ i 2i i
Bor1,e ™ DglBp o) +OF @ Bp.t-l
k
p-£+1 X T ky-k 7 kp_q-k
k=l k=1 k=]
1 2 l K K
T ke-1..T pHl-£+1 71 £-2 ag ¥ -f+]-
(0, flle D Duf1 PRS0 ) L D VD ST Dgf' eoP* -1k,
K=l k=l ke
qT ko, T kp2Kpy, o7 Koyl 4T
.(Dgfi ¢ 051 2(Dafi 0“.00512 t ](Dgfi- QD:] o, f' )...))

Changing the dummy variables k].kz....,k,__] of the second temm into

kz.k3....,k£. respectively, the second term becomes

k) 0 OOOE0
b."it 'h’y“"




k
p+l1-2+1 "2 ke-1 iT pe T k,-k T k, .-k
k21 kZ] kZ] D" ang” i kZ(DEfi angz 3p a...@Dge'] £
2" 3" 2°
T k-l ;T
(o f" @D, uk) ')() .
ky=P+T-241 ky=1 k=l k£=1
T ky-k T kyok T kp -k T k-1 T
ai 1772, 2i 2773, 3 21", 2 L, 2
(Dgf @D&: (Dgf °D£ (Dgf a...oDE (Dgf ubDE Duf )...))

Thus (2) is true for m=p+l and 1 <2 <p. By (A.3), it is easy to see that
(2) is true for m=£ =p+]1. Hence (2) is true for m=p+1. By induction,
(2) is true for m>1.

Let h(x): R'+ R be a C” function.
Lemma A.2: If
-(D)Z(h)x=0

(A.4)

3 -
(S] Sz ¢ e Sk) (th)x=0 - dpx]'

k+1
L(Dx h)x=0 -

i+l

where S, is a pxN' "' matrix for 1 <1 <k, then d e Image (B), where B =

(3 S48 Speeenl @S-

Proof: (A.4) is equivalent to

2 3 k+1
S](th)xso-rsz(o h)x=0 . +S (D h)x=0
Consider
SI(D h)xso d’.
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Note that (5§73§;)x=0 = hij hji (axJax )x_0 for 1<i<Nand 1<j<N,

th
Let (s])i be the i~ column of Sy~ Then, since hij = hji’

N N

0= L. (s9)a. hy o * ((s)
O g m V(AN T, a.'zﬂ a2=§,+1 R GRS

2
5,(0%h)

+(sl)(élz--l)Nﬂa])ha]a?_ = d'.

Therefore, d' e span (Q), where

N N N
=(u U s, . +s DU U {s 1.
2,1 a,%a,+1 (a)-1)N+a, “*(a,-1)N+a, a =1 (a,-1)N+a,

Now consider the matrix Si defined by

51 = oy 31 = Sl *Un).

It is easy to see that the (a]-l)N+a2-£Q column of Si

' 2(5])(a]_])N+a‘o if a] =az
(sl)(a]-])N+a2 N
(sl)(a]-l)N+a2+(sl)(a2-1)N+a]’ if a; 42,

where 1 farz <N and 1 <a, <N, Clearly Image (S ) = span (Q). Similar

arguments can be applied for (th)x=0' ...(Dk*] )x=0‘ Therefore,

d e Image (B). (Q.E.D.)
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